JBO竞博波动派和微粒派互相抬杠好多年,一开始谁都没说服谁,直到一对死对头的出现,才暂时分出了个高低。
这本是一场势均力敌的对抗,可是后来牛顿站到物理江湖的顶点,成为一方霸主。
风水轮流转,一百多年后,波动派出现了一名英国的眼科医生,单枪匹马挑战权威。
话说杨少侠,也是个天才,两岁读书,四岁背诗,六岁刷完两遍《圣经》,十四岁精通多国语言。
原以为一代文豪就此诞生,可谁知杨少侠路子跑偏了,任性地选择转专业,开始研究起光学。
然后他随随便便做了个实验,一不小心就青史留名。这就是著名的杨氏双缝干涉实验。
后来大家都知道,麦克斯韦预言了光是一种电磁波,赫兹又用实验证明了这事儿,微粒派这下算是心服口服了。
关于光的本质之争,并没有就此完结,托马斯·杨肯定想不到,又过了百来年,自己这个杨少侠的名头快要顶不起了。
如果你完全不懂量子力学,请放心大胆地往下看,我保证不用任何公式就能让你秒懂,连 1+1=2 的幼儿园数学基础都不需要。
如果你自以为懂量子力学,请放心大胆地往下看,我保证你看完会仰天长叹:什么是量子力学啊?
正如量子力学大师费曼所说:没有人懂量子力学。如果你觉得懂了,那肯定不是真懂。
在烧脑、反直觉和毁人三观方面,没有任何学科能够和量子力学相比。如果把理工男最爱的大学比作霍格沃兹魔法学校,那么唯一和量子力学专业相提并论的,只能是黑魔法。
然而,量子理论之所以如此神秘,并不是因为物理学家的故弄玄虚。其实,在量子理论刚诞生的摇篮时期,它只是一门人畜无害的学科,专门研究电子、光子之类小玩意儿。
而「量子」这个现在看来很厉害的名字,本意不过是指微观世界中「一份一份」的不连续能量。
20 世纪初,物理学家开始重点纠结一个纠结了上百年的问题:光,到底是波还是粒子?
很多著名科学家(牛顿、爱因斯坦、普朗克)做了很多权威的实验,确凿无疑地证明了光是一种粒子。
很多著名科学家(惠更斯、杨、麦克斯韦、赫兹)做了很多权威的实验,确凿无疑地证明了光是一种波,电磁波。
于是自古以来,塞伯坦星上的科学家就分成两派:波派和粒派,两派之间势均力敌的百年撕逼战争从未分出胜负。
很多人问我:科学家为什么要为这种事情势不两立,大家搁置争议、共同研究不就得了。
且问你:《权力的游戏》中,信奉七神的维斯特洛人民,为何要与信奉旧神的关外野人拼个你死我活?
唯一的和谐社会可能是古希腊:他们的神多达百八十号JBO竞博,有管天上、有管地下,各路神仙各司其职,倒也井水不犯河水。
要命的是,科学家们信仰的神只有一个,而且是放之宇宙而皆准的全能大神。这位神祇的名字,叫作真理。
大到宇宙的诞生,小到原子的运转,科学家们相信,这个世界的万事万物都是基于同一个规律,可以用同一个理论,甚至同一套方程解释一切。比如,让苹果掉下来把牛顿砸晕的是万有引力,让月亮悬在空中掉不下来的也是万有引力。用同一个方程,既能算出地球的质量,也能让马斯克的猎鹰九号火箭上天,这就是科学的威力。
当然,科学家们没有谁敢自称是真理的代言人,就连牛顿谦虚起来都是这样的:「我只是一个在海滩上捡贝壳的孩子,而真理的大海,我还没有发现啊!」
整个科学史,就像一个集卡拼图的过程。做实验的科学家们每发现一个科学现象,搞理论的科学家们就绞尽脑汁推测它背后的运行规律。不同领域的大牛把各方面的知识、理论慢慢拼到一起,真理的图像就渐渐清晰。
在 20 世纪初,光学的知识储备和数学理论越来越完善。大家逐渐觉得,这一块的真相总算有希望拼出来了——结果却发现,波派和粒派的理论早已背道而驰,还各自越走越远。这就好比你集了一辈子卡片,自以为拼得差不多了。这时突然发现,你拼出的图案居然和别人是不一样的,而且差的不是一点点!
双方僵持不下直到 1924 年,终于有人大彻大悟:波 or 粒,为什么光不能两者都是呢?
也许在某些时候,粒子看起来就像是波;在另一些时候,波看起来就像是粒子。波和粒如同阴阳一般相生相克,就像一枚硬币的正反两面(波粒二象性),只不过我们一直以来都在盲人摸象、各执一词。
用一个发射光子的机枪对着双缝扫射,从缝中漏过去的光子,打在缝后面的屏上,就会留下一个光斑。(等效于 1961 年电子双缝干涉实验)
光子像机枪发射的子弹一样笔直地从缝中穿过,那么屏幕上留下的一定是 2 道杠,因为其他角度的光子都被板挡住了。
光子穿过缝时,会形成 2 个波源。两道波各自震荡交汇(干涉),波峰与波峰之间强度叠加,波峰与波谷之间正反抵消,最终屏幕上会出现一道道复杂唯美的斑马线(干涉条纹)。
是波是粒还是二合一,看屏幕结果一目了然,无论实验结果如何,都在我们的预料之中。
这样,我们再做一次实验,把光子一个一个地发射出去,看会怎么样,一定会变成两道杠的!
结果:斑马线,竟然还是斑马线,怎么可能?我们明明是一、个、一、个把光子发射出去的啊!
最令人震惊的是,一开始光子数量较少时,屏幕上的光点看上去一片杂乱无章,随着积少成多,渐渐显出了斑马线条纹!
问题是:根据波动理论,斑马线来源于双缝产生的两个波源之间的干涉叠加;而单个光子要么穿过左缝、要么穿过右缝,穿过一条缝的光子到底是在和谁发生干涉?
难道……光子在穿过双缝时分裂成了两个?一个光子分裂成左半光子和右半光子,自己的左手和右手发生了关系?事情好像越来越复杂了。干脆一不做二不休,我们倒要看看,光子究竟是怎样穿过缝的。
第三次实验:在屏幕前加装两个摄像头,一边一个左右排开。哪边的摄像头看到光子,就说明光子穿过了哪条缝。同样,还是点射模式发射光子。
结果:每次不是左边的摄像头看到一个光子,就是右边看到一个。一个就是一个,从来没有发现哪个光子分裂成半个的情况。
大家都松了一口气。光子确实是一个个粒子,然而在穿过双缝时,不知怎么就会变形成两道波同时穿过,形成干涉条纹。
虽然诡异了些,不过据说这就是波粒二象性了,具体细节以后再研究吧,这个实验做得人都要精分了。
一个貌似简单的小实验做到这份上,波和粒子什么的已经不重要了,重要的是现在全世界的科学家都懵逼了。
在球迷看来:球进还是不进,和射手是不是 C 罗、梅西有关,和对方门将的状态有关,和裁判收没收钱说不定还有关。
在科学家看来:有关的东西更多,比如球的受力、速度和方向,距离球门的距离,甚至草皮的摩擦力、球迷吼声的分贝数等等。
不过,只要把这些因素事无巨细地考虑到方程里计算,完全可以精确预测三秒后球的状态。但无论是谁,大家都公认的是,球进与不进,至少和一件事情是绝对无关的:
无论你用什么品牌的电视,无论电视的屏幕大小、清晰度高低、质量好坏,无论你看球时是在喝啤酒还是啃炸鸡,当然更无论你看不看电视直播——该进的球还是会进,该不进就是不进,哪怕你气得把电视机砸了都没用。
双缝干涉的第三次实验证明了,在其他条件完全相同的情况下,球进还是不进,直接取决于在射门的一瞬间,你看还是不看电视!
光子从发射器射向双缝,就好比足球射向球门;用摄像头观测光子是否进缝、怎么个进法,就好比用电视机看进球。
第三次实验与第二次的唯一区别JBO竞博,就是实验 3 开了摄像头观察光子(看电视),实验 2 没放摄像头(不看电视)——两次实验的结局竟截然不同。
难道说,「光子是什么」这一客观事实,是由我们的观察(放不放摄像头)决定的?
在所有人懵逼的时候,还是有极少数聪明人,勇敢地提出了新的理论: 光子,其实是一种智能极高的外星 AI 机器人。
之所以观察会导致实验结果不同,是因为光子在你做实验之前就悄悄侦查过了,如果发现有摄像头,它就变成粒子形态;如果发现是屏幕,就变成波的形态。
难道机器人阿童木真的存在?(「阿童木」是日语「アトム」的发音直译,词语源自英语「Atom」,意即「原子」)
这种扯淡理论居然没被口水喷死,还要做实验去验证它,可见科学家们已经集体懵逼到了什么地步。
我们算好光子穿过缝的时机,等它穿过之后,再以迅雷不及掩耳之势加上摄像头。(等效于 1978 年惠勒延迟选择实验)
无论加摄像头的速度有多快,只要最终加上了摄像头,屏幕上一定是两道杠;反过来JBO竞博,如果一开始有摄像头,哪怕在最后一刻秒秒钟撤掉,屏幕上一定是斑马线。
回到看球赛的那个例子,就好比:我先闭上眼睛不看电视,等球员完成射门、球飞出去 3 秒钟后,我突然睁开眼睛,球一定不进,百试百灵。
在你冲出门去买足彩之前,我先悄悄提醒你:这种魔咒般的黑科技,目前只能对微观世界的基本粒子起作用。要用意念控制足球这样的大家伙,量子还做不到啊!
请注意,加不加摄像头,是在光子已经穿过双缝之后再决定的。不管光子在穿缝的时候变成什么形态,过了缝应该就定型了。
既然光子的状态在加摄像头之前就定型了,为什么实验结果还是能在最后一刻发生变化?
难道说,在之后做出的人为选择(未来),能够改变之前已经发生的事实(历史)?
而且,加摄像头的速度,可以做到非常快(40 纳秒)。就算光子真的是个狡猾的微型变形金刚,当它变成波的形态穿过双缝,在最后一刻却发现面前是一个摄像头时,它也来不及再次变身了吧?
好端端一个实验弄得谣言四起,物理学家们纷纷感到几百年来苦心经营的科学体系正在崩塌。
为了一只猫的死活,100 年前的天才哲学家,学历最高的足球运动员,撩妹无数的量子力学教授……他们都在纠结个啥?
另一些人,却恰恰相反——他们做任何事,都是为了纠结,下面我要说的,就是另一些人的故事。
23 岁,是时候做个决定了。比自己小两岁的弟弟,已经成为国奥队的中场核心。在刚刚结束的伦敦奥运会上,哈那德·玻尔率丹麦队 17:1 血洗法国队,斩获银牌创造「丹麦童话」,一夜之间成为家喻户晓的球星。
而我,作为丹麦最强俱乐部——哥本哈根 AB 队的主力门将,居然从未入选国家队,这简直是一种耻辱。
上次和德国米特韦达队踢友谊赛,对手竟敢趁我在门框上写数学公式的时候,用一脚远射偷袭,打断我的思路!最后一刻不还是被我的闪电扑救解围,要是后卫早点上去堵枪眼,那场球踢完就可以交作业了。
是成为世界最伟大的门将,还是成为世界最伟大的物理学家,这是一个问题,我需要纠结一下。
100 多年前,为了搞清光子究竟是波还是粒子,科学家们被一个貌似简单的「双缝干涉」实验弄到集体「精分」。
我们曾经天真地以为,无论用什么样的姿势看电视直播,都不可能影响球赛结果,可是在微观世界中,这个天经地义的常识好像并不成立,这就是那么多高智商理工男懵逼的原因。
但是在玻尔看来,将宏观世界的经验常识套用到微观世界的科学研究上,纯属自寻烦恼。
通过常识,我们可以理解一个光滑小球的物理属性;但是凭什么断定,组成这个小球的万亿亿亿个原子,也一定有着和小球完全相同的属性?
凭什么在微观世界中,原子、电子、光子,一定要遵循和宏观世界同样的物理法则?
严格来说,量子理论是一群人,而不是一个人创立的。但是如果一定要选出一个「量子力学代言人」的话,我觉得非玻尔莫属,因为当别人纠结的时候,他第一个想通了。
在量子世界,一切事物可以同时处于不同的状态(叠加态),各种可能性并存。比如,在双缝干涉实验中,一个光子可以同时处在左缝和右缝。这种人类无法想象的叠加态,才是最普通不过的本质形态;而在我们看来「正常」的非黑即白,才是一种特例。
叠加态是不可能精确测量的。比如,精确测出了粒子的位置,但它的速度却永远测不准!这并不是因为仪器精度不够高,其实,仪器再好都没用。这个不可能是被宇宙规律所禁锢的「不可能」,而非「有可能但目前做不到」。
虽然一切事物都是多种可能性的叠加,但是,我们永远看不到一个既左且右、又黑又白的量子物体。只要进行观测,必然看到一个确定无疑的结果。至于到底看到哪个态则是随机的,其概率高低取决于叠加态中哪个态的成分居多。
没装摄像头:光子在未观测的情况下处于「多种可能性并存」的叠加态,以 50% 的概率同时通过了左缝和右缝,形成干涉条纹;
装上摄像头:光子被观测后只能处于一个态,不能神奇地同时穿双缝了,所以干涉条纹就消失了。
因为完美解释了双缝干涉等灵异现象,玻尔一(四)夜(面)成(树)名(敌)。
比如,没有观测时,光子是混沌中的叠加态;观测的一瞬间,光子就变成了单一的确定态,请问两种态是怎样无缝切换的?
按照玻尔的说法,观测的一瞬间,光子就随机蜕变成多种可能中的一种,还把这个过程取名叫「塌缩」。具体怎么个塌法,玻尔自己也说不清。
再比如,既然触发「塌缩」的前提是「观测」,那么谁能够成为合格的观察者呢?
10 年前,正是薛老师亲手写下了量子波动方程,与矩阵力学、路径积分一起,被后人并称为量子力学的三大基石。
光在和物质相互作用的行为上表现为粒子的性质,例如光电效应和康普顿效应,其作用表现的与“粒子”行为一致,光子具有动量和能量,和物质作用是也满足能量守恒、动量守恒。
在牛顿时代人们就开始了对光的性质的争论。在当时惠更斯提出了光的波动性,牛顿提出了光的粒子性,但他们的理论都和观察结果有些出入。
此后的几世纪人们一直在争论光的性质,从双缝干涉到光量子理论,人们的认识在不断深入。1916年,美国物理学者罗伯特·密立根做实验证实了爱因斯坦关于光电效应的理论。从麦克斯韦方程组,无法推导出普朗克与爱因斯坦分别提出的这两个非经典论述。物理学者被迫承认,除了波动性质以外,光也具有粒子性质。这是人们第一次认为光同时具有粒子性和波动性两种性质。
实际上,物质都具有波粒二象性,只是存在着波动性的大小问题。物质的波动性取决于它的质量,质量越大,其不确定性就越小,同时波动性也就越小,因为波的分布只是粒子出现的概率分布罢了。
当我们在做双缝干涉时,粒子的出现就和波粒二象性有关,因为只有波的性质才能让粒子可以随机通过两个缝之间的一个,而在击打在光电板上的图像又说明了电子的粒子性。而它的概率分布我们可以用薛定谔方程来得出。
波粒二象性的问题至今也未完全解决,但它的存在的确让我们第一次感到了量子世界的奇异。